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ABSTRACT 
A method of using piezoelectric lead zirconate titanate (PZT) 

transducers to characterize the vibrational modes of ceramic 
Vehicle Body Armor Support System (VBASS) plates for the 
purpose of crack detection is presented.  The amplitudes of the 
vibrational modes of undamaged plates are compared to the 
vibrational mode amplitudes of damaged plates and are shown to 
be clearly different.  VBASS plates for testing are damaged either 
by a blunt impact to the ceramic plate surface or cracked using a 
machine-shop press.  Data from these tests will be used to design 
a prototype hand-held device for the nondestructive testing 
(NDT) of the VBASS plate structural integrity. VBASS plates are 
used as proof-of-principle samples in the absence of vest body 
armor samples. 

Keywords: ceramic armor plates, NDT, PZT transducers, crack 
detection  

INTRODUCTION 
Various types of Silicon Carbide (SiC) composite body armor 

plates are in use by the US military because of the relative light 
weight and the degree of ballistic protection offered to soldiers 
by ceramic plates. Obviously, the protection is diminished if the 
plate integrity is compromised.  Any number of things can 
induce cracks in the SiC plates; therefore it is important to 
inspect them after manufacturing, prior to shipping, and most 
importantly, in the field.  There are various methods to inspect 
VBASS plates using a fixed laboratory based device [1]; 
however, these techniques are clearly not available in the field.  

To achieve the goal of developing a portable test device, the 
authors used PZT transducers to excite flexural mode waves in 
the VBASS ceramic armor plates. The resulting transmission 
signals were used to characterize the plates and for later 
application in device development. 
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The authors found that there is a clear difference in the 
transmission signal between damaged and undamaged plates.  
Figure 1 below shows the structural composition of a damaged 
ceramic VBASS plate. 
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plate which forces the receiving transducer on the right to vibrate 
and generate voltages via the piezoelectric effect.  These signals 
are observed using an oscilloscope.  The basic method of this 
technique is to use the signal generator to sweep through a 
frequency range of a few hundred kHz to characterize the 
response of an undamaged plate and then to use that data as a 
baseline to determine the condition of other plates that are 
suspected of being damaged.  In our particular test design, a 
LabVIEWTM program was written to control the sweep of the 
signal generator through various frequencies and to record the 
output voltage from the transducer attached on the opposing end 
of the plate. 

 
DATA 

VBASS plates were damaged in three ways and then analyzed 
with the aforementioned program-directed scanning technique. 
Two modes of damage were studied: blunt impact damage and 
crack damage induced by a hydraulic press.  The plates were also 
imaged using an in-house x-ray machine used for NDT.  Damage 
to the plate subject to blunt impact was barely detectable on x-
ray. The press induced crack was clearly visible. 

 

A. PZT Transducer Resonant Frequency Location 
The fundamental frequency of the PZT transducers used to 

determine the ceramic plate vibration mode flexural frequencies 
was determined using a Wayne-Kerr admittance bridge, an 
oscilloscope and a signal generator.   The bridge is manually 
adjusted to produce a balance condition.  Usually, but not 
always, this test is performed by the manufacturer of the 
transducers as part of a quality control process. 

B. Plate Resonant Frequency Location 
Figure 3 is an oscillogram showing the voltage amplitudes of 

the undamaged and cracked plate under test. The top-most trace 
is the signal of 63 kHz applied to driving transducer on both 
plates. The center trace is the signal from the receiving 
transducer on the undamaged plate.  While it is diminished in 
amplitude and contains slightly more noise the only significant 
difference from the driving signal is a 2.5 µsec phase delay due 
to transmission delay through the plate. The bottom trace is the 
signal from the receiving transducer on the cracked plate. This 
waveform is extremely low in amplitude and bares little  

 

resemblance to the driving waveform. These differences in both 
amplitude and shape of the signals generated at the receiving 
transducers clearly indicate different plate vibrational resonances 
indicating a damaged plate. 

 

Figure 4 shows the graph of the peak-to peak output voltages 
from the receiving transducer of the three VBASS plates. One 
plate is undamaged, the second contains a small area of impact 
damage, and the third contains a hairline crack across the plate. 
The dramatic reduction in the received amplitude is a clear 
indication of plate damage. 

 
 
 

 
 
Figure 3 - Oscillogram of input and output voltages on cracked plate 
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Figure 2 -  Schematic of the test circuit with a ceramic plate
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Figure 4– Plots of the output peak-to-peak voltages of the VBASS 
plates for the three different conditions 

A second metric the authors used to compare the plates was 
the total harmonic distortion of the received signals. The THD is 
defined below in Equation 1 as: 

2 2 2
2 3 4

1

... nV V V V
THD

V
+ + + +

=
2

 (1) 

Where Vn are the n’th harmonics of the peak-to-peak voltages 
measured . 

 
Figure  5 – Plots of the total harmonic distortion of the 
output voltages 

 

 
 

Figure 5 shows a graph of the THD versus input driving 
frequency. As expected from inspection of the oscillogram 
traces, the THD is lowest for the undamaged plate, higher  for the 
plate containing small blunt impact damage and significantly 
higher for the cracked plate. 

 
In order to attain the goal of having a portable device for plate 

crack detection, a single transducer arrangement is the most 
likely design that would lead to a practical device. The authors 
investigated a method using a transducer to first excite the plate 
into resonant vibration and then switch to a receive mode to 
sense the resulting decaying vibrations. It was found that by 
applying only a few cycles (five to seven) of excitation near 
resonant frequencies it was possible to obtain an extremely 
consistent decay signal with a characteristic ellipsoidal envelop. 
Figures 6 and 7 illustrate this response for undamaged and 
damaged plates. In the oscillogram in Figures 6 and 7, the 
vertical axis is 50 mV/div and 10 µsec/div for the horizontal axis.  
Figure 6 shows waveform, or signature, of an undamaged plated 
that the authors to used as the reference plate response.  Figure 7 
shows the waveform of a damaged plate. Figure 8 illustrates the 
configuration used to accomplish this excite/sense decaying 
vibrations method. It is important to disconnect the exciting 
circuit during the sensing portion of the test so that the low 
impedance output of the exciting circuit does not load down the 
sensor thereby reducing its response.  

 
Figure  6 – Decaying vibrations of  
undamaged plate 

 

 
Figure  7 – Decaying vibrations of  
cracked plate 

Published in the June 2008 issue of Materials Evaluation, American Society for Nondestructive Testing 



  4 

 

  

 

Figure  8 – Block diagram of the electronic system for 
Exciting/Sensing  decaying vibrations of a 
cracked plate 

 

 

ANALYSIS 

The natural vibration mode frequencies of the plate under study 
were computed and compared to the measurements made with 
the PZT transducers.  Calling “w” the plate vertical 
displacement, the equation of motion for a plate under various 
boundary conditions is derived by Leissa [2, 7] and is, 

2
2

2
0,

d w
D w

dt
ρ∇ + =   (2) 

where D is the plate stiffness defined by, 
3

212(1 )
,Eh

D
ν

=
−   (3) 

where E is Young’s modulus, h is the plate thickness, ν is 
Poisson’s ratio, ρ is the mass density per unit area of the plate, 

is the three-dimensional Laplacian operator, and t is the time.  
A table of the constants and physical dimensions of the plate that 
are used in the computation of the resonant frequencies, shown in 
equation (4), are provided below in Table I. In equation (4), m 
and n, are the integers representing the vibrational modes for the 
length and width respectively. The solutions to the equation of 
motion are the frequencies of vibration, ω, of the plate and are 
graphed in Figure 9.  As can be seen in the chart of Figure 9, 
there are groups of resonant frequencies approximately every 
twenty kHz. 

2∇

2 2

mn

D m n
a b
π π

ω
ρ

= +
⎧ ⎫⎛ ⎞ ⎛ ⎞
⎨⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

⎬   (4) 

In Figure 9 the group of frequencies around 70 kHz corresponds 
with the fundamental resonant frequency of the PZT transducer 
at 69 KHz which was determined from admittance measurements 
of unbonded transducers as discussed earlier. Differences 
between the computed and measured resonance frequency values 
can be explained by the fact that the theory is for a monolithic 
plate and experimentally we made the measurements with a three 
layered plate as is shown in Fig. 1.  In progress, are efforts to 
implement a numerical, multi-layer model of ultrasound 
transmission in layered media.   The ability to simulate ultrasonic 
non-destructive testing will make the development and testing of 
various transducer designs more efficient. 

 
 

TABLE I: PHYSICAL CONSTANT AND PLATE VALUES [3]
Young’s Modulus 401.38 GPa 

Poisson’s Ratio 0.1875 
Density 4303 kg/m3

    Plate Dimensions  
Plate length, a 33 cm 
Plate width,  b 17.8 cm 
Plate depth, d 2.4 cm 

Volume 660 cm3
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Figure 9: Chart of computed resonant frequencies of the VBASS 
plate 

FUTURE EFFORTS 
One of the goals of this research is to develop a device 

that can test for the existence of cracks in armor plates in the 
field, away from laboratories or test equipment. The prototype 
device is based on the “impact method” and a schematic of the 
prototype is shown in Fig. 10.  (An excellent review of the 
ultrasonic “impact method” is provided in the Evans [4] patent as 
well as other texts on NDT [5,6].)  This device would be held 
over the armor sample and pushed against the plate to release the 
plunger.  This action will send a shockwave through the plate 
which can be picked up by a ring transducer inside the device for 
measurement and comparison.  Presently the device is attached to 
an oscilloscope for signal analysis.  In the future, it is planned to 
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have an integrated MEMS device collect and perform the 
required data and signal analysis. The use of a piezoelectric 
transducer as both the exciter and sensor is also possible in a 
hand held device and this configuration is currently in the 
prototype phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 

PZT transducers can be used to characterize the flexural mode 
resonances of rectangular, ceramic armor plates in a range of 
frequencies between 50 and 100 kHz.  By the use of bonded 
transducers on the VBASS plate, the presence of hairline cracks 
can be determined by comparing the output voltage waveforms 
against that of an undamaged plate.  The authors have shown 
how PZT transducers, in  a variant of the impact method [4], can 
be used to characterize the resonant modes of vibration of a 
ceramic armor plate and how a single transducer can be used to 
distinguish damaged from undamaged plates. 

 Two metrics were used to determine if the plates were 
cracked; 1. the peak-to-peak output voltage versus frequency of 
the driving voltage and, 2. the total harmonic distortion of the 
output signal versus the input driving frequency relative to that of 
the uncracked plate.  The peak-to-peak voltage graphs clearly 
show a shift in the resonant vibration frequency of the plate from 
65 kHz to 74 kHz as well as a reduction in the amplitude of the 
transmission signal. The total harmonic distortion compliments 
the peak-to-peak voltage graphs by showing the degree of 
distortion of the transmitted signal in the cracked plate relative to 
the uncracked plate. The total harmonic distortion metric may be 
useful in the future to determine crack depth or severity. 

The ultimate objective of this work is to develop a device that 
provides a reliable cracked or uncracked plate assessment in the 
field. The authors have demonstrated a working prototype of a 
portable, handheld device to perform this kind of test. Based on 
the data from the experiments mentioned above, research and 
development is currently under way to develop more robust 
versions of the hand-held device for armor crack detection in the 
field.   
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